返回首页

什么是位错滑移?

253 2023-07-28 23:57 admin

一、什么是位错滑移?

(dislocation glide)是指位错在晶体内沿滑移面的运动。

在剪应力作用下,原子发生位错是在包含其伯格斯矢量的平面上运动,称为位错滑移。其运动方式类似蠕虫爬行,是沿着滑移面逐步传播、移动的。

位错滑移是指在外力作用下,位错线在其滑移面(即位错线与伯氏矢量b构成的晶面)上的运动,结果导致晶体永久变形。

二、刃型位错的滑移面为什么是唯一的?

刃型位错的滑移面由其位错线和伯氏矢量唯一确定。 滑移面为密排面且伯格斯矢量为密排方向的刃位错滑移所需的应力一般是最小的。其他方向的刃位错不是不能滑移,而是开动比较困难。

刃位错特点1).刃型位错有一个额外的半原子面。一般把多出的半原子面在滑移面上边的称为正刃型位错,记为“┻”;而把多出在下边的称为负刃型位错,记为“┳”。其实这种正、负之分只具相对意义而无本质的区别。

2).刃型位错线可理解为晶体中已滑移区与未滑移区的边界线。它不一定是直线,也可以是折线或曲线,但它必与滑移方向相垂直,也垂直于滑移矢量。

3).滑移面必定是同时包含有位错线和滑移矢量的平面,在其他面上不能滑移。由于在刃型位错中,位错线与滑移矢量互相垂直,因此,由它们所构成的平面只有一个。

4).晶体中存在刃型位错之后,位错周围的点阵发生弹性畸变,既有切应变,又有正应变。

就正刃型位错而言,滑移面上方点阵受到压应力,下方点阵受到拉应力:负刃型位错与此相反。

5).在位错线周围的过渡区(畸变区)每个原子具有较大的平均能量。但该区只有几个原子间距宽,畸变区是狭长的管道,所以刃型位错是线缺陷。

三、ACDC乐队的前成员?

邦·斯科特(Bon Scott) — 主唱(1973年—1980年)

戴夫·埃文斯(Dave Evans) — 主唱(1973年)

科林·伯格斯(Colin Burgess) — 鼓和打击乐器(1973年—1974年)

罗布·贝利 二世(Rob Bailey II) — 贝斯(1973年—1974年)

诺尔·泰勒(Noel Taylor) — 鼓和打击乐器(1974年)

拉里·范·克瑞德特(Larry van Kriedt) — 贝斯,萨克斯管(1973年—1975年)

彼得·克拉克(Peter Clack) — 鼓和打击乐器(1974年—1975年)

马克·埃文斯(Mark Evans) — 贝斯(1974年—1977年)

西蒙·赖特(Simon Wright) — 鼓和打击乐器(1984年—1989年)

克里斯·斯莱德(Chris Slade) — 鼓和打击乐器(1989年—1994年)

四、蒂蒙斯模型的内涵及内在关系?

蒂蒙斯创业过程模型,是一种商业模型。美国百森商学院(Timmons)提出。他是美国创业学教育和研究的领袖人物之一。他在创业管理、新企业创建、创业融资和风险投资等领域的专题研究、创新性课程开发和教学等方面被公认为世界级的权威。蒂蒙斯认为,创业者或创业团队必须具备善于学习、从容应对逆境的品质,具有高超的创造、领导和沟通能力,但更重要的是具有柔性和韧性,能够适应市场环境的变化。

在Timmons模型中,商机、资源和创业团队这三个创业核心要素构成一个倒立三角形,创业团队位于这个倒立三角形的顶部。在创业初始阶段,商业机会较大,而资源较为稀缺,于是三角形向左边倾斜;随着新创企业的发展,可支配的资源不断增多,而商业机会则可能会变得相对有限,从而导致另一种不均衡。创业者必须不断寻求更大的商业机会,并合理使用和整合资源,以保证企业平衡发展。机会、资源和创业团队三者必须不断动态调整,以最终实现动态均衡。这就是新创企业的发展过程。

五、斯蒂格勒模型的内容?

1.规制立法重新分配财富。施蒂格勒认为,规制形式的最主要决定因素是规制将财富在社会成员间转移的方式;

2.立法者行为受其维持当权者的愿望驱使,即立法设计追求政治支持最大化;

3.利益集团为获得可接受的立法而以提供政治支持方式进行竞争。

六、什么是流变力学

流变学是力学的一个新分支,它主要研究材料在应力、应变、温度湿度、辐射等条件下与时间因素有关的变形和流动的规律。

流变学出现在20世纪20年代。学者们在研究橡胶、塑料、油漆、玻璃、混凝土,以及金属等工业材料;岩石、土、石油、矿物等地质材料;以及血液、肌肉骨骼等生物材料的性质过程中,发现使用古典弹性理论、塑性理论和牛顿流体理论已不能说明这些材料的复杂特性,于是就产生了流变学的思想。英国物理学家麦克斯韦和开尔文很早就认识到材料的变化与时间存在紧密联系的时间效应。

麦克斯韦在1869年发现,材料可以是弹性的,又可以是粘性的。对于粘性材料,应力不能保持恒定,而是以某一速率减小到零,其速率取决于施加的起始应力值和材料的性质。这种现象称为应力松弛。许多学者还发现,应力虽然不变,材料棒却可随时间继续变形,这种性能就是蠕变或流动。

经过长期探索,人们终于得知,一切材料都具有时间效应,于是出现了流变学,并在20世纪30年代后得到蓬勃发展。1929年,美国在宾厄姆教授的倡议下,创建流变学会;1939年,荷兰皇家科学院成立了以伯格斯教授为首的流变学小组;1940年英国出现了流变学家学会。当时,荷兰的工作处于领先地位,1948年国际流变学会议就是在荷兰举行的。法国、日本、瑞典、澳大利亚、奥地利、捷克斯洛伐克、意大利、比利时等国也先后成立了流变学会。

流变学的发展同世界经济发展和工业化进程密切相关。现代工业需要耐蠕变、耐高温的高质量金属、合金、陶瓷和高强度的聚合物等,因此同固体蠕变、粘弹性和蠕变断裂有关的流变学迅速发展起来。核工业中核反应堆和粒子加速器的发展,为研究由辐射产生的变形打开新的领域。

在地球科学中,人们很早就知道时间过程这一重要因素。流变学为研究地壳中极有趣的地球物理现象提供了物理-数学工具,如冰川期以后的上升、层状岩层的褶皱、造山作用、地震成因以及成矿作用等。对于地球内部过程,如岩浆活动、地幔热对流等,现在则可利用高温、高压岩石流变试验来模拟,从而发展了地球动力学。

在土木工程中,建筑的土地基的变形可延续数十年之久。地下隧道竣工数十年后,仍可出现蠕变断裂。因此,土流变性能和岩石流变性能的研究日益受到重视。

流变学的研究内容

流变学研究内容是各种材料的蠕变和应力松弛的现象、屈服值以及材料的流变模型和本构方程。

材料的流变性能主要表现在蠕变和应力松弛两个方面。蠕变是指材料在恒定载荷作用下,变形随时间而增大的过程。蠕变是由材料的分子和原子结构的重新调整引起的,这一过程可用延滞时间来表征。当卸去载荷时,材料的变形部分地回复或完全地回复到起始状态,这就是结构重新调整的另一现象。

材料在恒定应变下,应力随着时间的变化而减小至某个有限值,这一过程称为应力松弛。这是材料的结构重新调整的另一种现象。

蠕变和应力松弛是物质内部结构变化的外部显现。这种可观测的物理性质取决于材料分子(或原子)结构的统计特性。因此在一定应力范围内,单个分子(或原子)的位置虽会有改变,但材料结构的统计特征却可能不会变化。

当作用在材料上的剪应力小于某一数值时,材料仅产生弹性形变;而当剪应力大于该数值时,材料将产生部分或完全永久变形。则此数值就是这种材料的屈服值。屈服值标志着材料有完全弹性进入具有流动现象的界限值,所以又称弹性极限、屈服极限或流动极限。同一材料可能会存在几种不同的屈服值,比如蠕变极限、断裂极限等。在对材料的研究中一般都是先研究材料的各种屈服值。

在不同物理条件下(如温度、压力、湿度、辐射、电磁场等),以应力、应变和时间的物理变量来定量描述材料的状态的方程,叫作流变状态方程或本构方程。材料的流变特性一般可用两种方法来模拟,即力学模型和物理模型:

在简单情况(单轴压缩或拉伸,单剪或纯剪)下,应力应变特性可用力学流变模型描述。在评价蠕变或应力松弛试验结果时,利用力学流变模型有助于了解材料的流变性能。这种模型已用了几十年,它们比较简单,可用来预测在任意应力历史和温度变化下的材料变形。

力学模型的流变模型没有考虑材料的内部物理特性,如分子运动、位错运动、裂纹扩张等。当前对材料质量的要求越来越高,如高强度超韧性的金属、高强度耐高温的陶瓷、高强度聚合物等。对它们的研究就必须考虑材料的内部物理特性,因此发展了高温蠕变理论。这个理论通过考虑了固体晶体内部和晶粒颗粒边界存在的缺陷对材料流变性能的影响,表达出材料内部结构的物理常数,亦即材料的物理流变模型。

流变学的研究方法

流变学从一开始就是作为一门实验基础学科发展起来的,因此实验是研究流变学的主要方法之一。它通过宏观试验,获得物理概念,发展新的宏观理论。例如利用材料试件的拉压剪试验,探求应力、应变与时间的关系,研究屈服规律和材料的长期强度。通过微观实验,了解材料的微观结构性质,如多晶体材料颗粒中的缺陷、颗粒边界的性质,以及位错状态等基本性质,探讨材料流变的机制。

对流体材料一般用粘度计进行试验。比如,通过计算球体在流体中因自重作用沉落的时间,据以计算牛顿粘滞系数的落球粘度计法;通过研究的流体在管式粘度计中流动时,管内两端的压力差和流体的流量,以求得牛顿粘滞系数和宾厄姆流体屈服值的管式粘度计法;利用同轴的双层圆柱筒,使外筒产生一定速度的转动,利用仪器测定内筒的转角,以求得两筒间的流体的牛顿粘滞系数与转角的关系的转筒法等。

对弹性和粘弹性材料的实验方法分为蠕变试验、应力松弛试验和动力试验三种:

对材料进行蠕变实验一般有对材料试件施加恒定的拉力,以研究材料的拉伸蠕变性能的拉伸法;在专门的剪力仪中对材料施加恒定的剪力,研究材料的剪切蠕变性能;利用三轴仪,对材料试件施加轴向应力和静水压力,研究材料的单向或三向压缩蠕变性能;利用扭转流变仪,对材料试件施加恒定的扭力,研究材料的扭转蠕变性能;以及在粱形试件上施加恒定的弯矩,研究材料挠度蠕变性能的弯曲法等。

应力松弛实验是将材料试件置于应力松弛试验仪上,使试件产生一恒定的变形,测定试件所受应力随时间的衰减,研究材料的流变性能,也可以计算材料松弛时间的频谱。这种试验也可在弯曲流变仪、扭转流变仪、压缩流变仪上进行,此法适用于高分子材料和金属材料。

除蠕变和应力松弛这类静力试验外,还可进行动力试验,即对材料试件施加一定频谱范围内的正弦振动作用,研究材料的动力效应。此法特别适用于高分子类线性粘弹性材料。通过这种试验可以求得两个物理量:由于材料发生形变而在材料内部积累起来的弹性能量;每一振动循环的能量耗散。动力试验可以测量能量耗散和频率的关系,通过这个规律可以与蠕变试验比较分析,建立模型。

在上述的各种试验工作中,还要研究并应用各种现代测量原理和方法,大型电子计算机的出现对流变学领域的研究产生了深远的影响,如对于非线性材料的大应变、大位移的复杂课题已用有限元法或有限差分方法进行研究。

随着经济和工业化的发展,流变学将有广阔的发展领域,并已逐步渗透到许多学科而形成相应的分支,例如高分子材料流变学、断裂流变力学、土流变学、岩石流变学以及应用流变学等等。在理论研究上,已超出均匀连续介质的概念,开始探索离散介质、非均匀介质以及非相容弹性介质的流变特性。实验原理和测试技术的研究以及电子计算机的应用,将在流变学的发展中显示重要的地位和发挥巨大的作用。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
用户名: 验证码:点击我更换图片